Choosing Extreme Events in an Analysis

ADF
HU Group Meeting
1/24/05

Introduction

- It is common in an analysis to choose either an event, or a combination, that is extreme in some way
 - Highest E_⊤ jet
 - Largest momentum as a seed
 - Largest energy event
 - Mass nearest 175 GeV
 - Highest likelihood
- These sorts of selections always made me nervous about modeling but I never worked out any more than that

Order Statistics

- The distribution of the "nth ordered event out of N samples" is called an "order statistic" if you ever need to look it up on Google
- Here we're interested in n=1, N=possibly many (or 4, for instance, for jet E)
 - The distribution of the largest value depends whether you choose 1, 10, or 100 samples

The Correct Answer

- The fully correct answer for the distribution is surprisingly not so hard
 - Find the cumulative distribution for the parent distribution from which they are drawn
 - Raise it to the Nth power
 - This is the cumulative distribution for the extreme maximum value
 - Because all N samples must be smaller
 - This points you to proper mixture of CDFN-j+1 and (1-CDF)j-1 to find jth largest value, but today we'll only do max j=1
 - The derivative, then, is the pdf of the extreme maximum value
- For uniform and exponential distributions, this can be calculated analytically; but it can always at least be done numerically

Illustrated

Detail: Uniform Distribution 0 to 1

- Fortunately the uniform distribution can be worked out analytically
 - CDF of uniform distribution is x
 - CDF of largest of N samples is xN
 - PDF of largest of N samples is NxN-1
 - What is average value of x drawn from this pdf?

$$\int_0^1 x \, p(x) \, dx = N \int_0^1 x^N \, dx = \frac{N}{N+1}$$
$$= 1 - \frac{1}{N+1}$$

Jet E_⊤

- Suppose Jet E_T in top events is very roughly uniform from 30 to 150 GeV
 - The distribution of the largest of 4 should average 125 GeV even if there is no "special category" of higher-E_T b-jets

A Heuristic Answer

- You might have guessed a heuristic answer to the question of where the extreme value is, on average
 - "It is at the point in the distribution where, if you have N samples, you expect the integral above to equal one event"
 - i.e. where the CDF is 1-1/N
 - This is called the "characteristic value" of the maximum
- For large N will generically tend to the median of the extreme value
- Allows you to quickly guess, that for instance the extreme of 6 gaussian samples is around +1σ; of 40 samples around 2σ, and around 600 samples is 3σ.
- You would probably expect that for large N the median of the jth largest would be when the CDF is 1-j/N but I've not found any theorems that this is so

Figure 4: The pdf of the standard normal parent and the pdfs of the maximum from random samples of size n = 10, 50, 100, 200.

Uncertainty

- The existence of high powers is a little scary, modeling-wise
 - Small errors in your original pdf will get multiplied by N
- But in principle your Monte Carlo will get this right
 - "No worries"
- What happens when there is substantial uncertainty associated with the actual values which you are ranking?
 - For example, jet E_T uncertainties are 10% or more in top events

Gauss/Gauss

Imagine a gaussian underlying distribution (width σ)with gaussian uncertainties (width σ_e) on each sample

$$\sigma' = \sqrt{\sigma^2 + \sigma_e^2} = \sigma \sqrt{1 + \left(\frac{\sigma_e}{\sigma}\right)^2}$$

- If we draw without uncertainties, the median value is basically (may have root 2 from def of erf wrong here)
 - \Box σ erf(1-1/N)
- If we draw with uncertainties, the value is
 - \Box σ' erf(1-1/N)
- So the value of the extreme event is now increased by $(\sigma \sigma')$ erf(1-1/N); for smallish σ_e/σ this is $\frac{\sigma_e^2}{2\sigma} \mathrm{erf}(1-\frac{1}{N})$

$$\frac{\sigma_e^2}{2\sigma}$$
erf $(1-\frac{1}{N})$

- Note what happened—the measured value is systematically above the actual value, even though the measurement uncertainty was unbiased and symmetric!
 - The more extreme the event you're looking for, the bigger the bias

Back to Jet E_T Example

- If we cavalierly substitute RMS for σ in above, we can estimate the effect on Jet E_T
- $\square \sigma_e$ =10 GeV; σ =120/sqrt(12)=34 GeV
 - Erf(0.75) is about 0.8
 - Gives about 1.5 GeV in total
 - Yay, safe!

About Likelihood

- The likelihood itself does not have uncertainty
 - Though it is formed using the uncertainties
 - So the likelihood spur to this study is immune to the uncertainty bias
 - But it's interesting to contemplate in light of the first part of the talk
- The likelihood of the correct combination in a top event has a well-defined distribution
- The wrong combination does not necessarily have a well-defined distribution
 - The largest value of this distribution compared to the actual value of the correct combination is what makes it possible to choose the wrong one
 - When the distribution is broad, and N is large, you get a surprisingly large value
 - Making N smaller reduces this problem

Conclusions

- Question: choosing the extreme of N events
- Heuristically, the median value of the extreme value is given by the value of the CDF which corresponds to probability 1-1/N
- Mathematically, take CDF of underliying distribution, raise to Nth power to find CDF of the extreme value, take derivative to find PDF of extreme value
- When there are uncertainties, the extreme value is biased by $\frac{\sigma_e^2}{2\sigma} \mathrm{erf} (1-\frac{1}{N})$
 - Depends on square of the uncertainties, so if they are substantial, or N is very large, cannot ignore!
 - At least in case of 4 top jet E_T, the bias seems to be small